PSQR: A Stable and Efficient Penalized Spline Algorithm
نویسندگان
چکیده
We introduce an algorithm for reliably computing quantities associated with several types of semiparametric mixed models in situations where the condition number on the random effects matrix is large. The algorithm is numerically stable and efficient. It was designed to process penalized spline (P-spline) models without making unnecessary numerical approximations. The algorithm, PSQR (P-splines via QR), is formulated in terms of QR decompositions. PSQR can treat both exactly rank deficient and ill-conditioned matrices. The latter situation often arises in large scale mixed models and/or when a P-spline is estimated using a basis with poor numerical properties, e.g. a truncated power function (TPF) basis. We provide concrete examples where unnecessary numerical approximations introduce both subtle and dramatic errors that would likely go undetected, thus demonstrating the importance of using this reliable numerical algorithm. Simulation results studying a univariate function and a longitudinal data set are used to demonstrate the algorithm. Extensions and the utility of the method in more general semiparametric regression applications are briefly discussed. MATLAB scripts demonstrating implementation are provided in the Supplemental Materials.
منابع مشابه
Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model
Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...
متن کاملRoot-n Consistency of Penalized Spline Estimator for Partially Linear Single-index Models under General Euclidean Space
Single-index models are important in multivariate nonparametric regression. In a previous paper, we proposed a penalized spline approach to a partially linear single-index model where the mean function has the form η0(α0 T x) +β0 T z. This approach is computationally stable and efficient in practice. Furthermore, it yields a root-n consistent estimate of the single-index parameter α and the par...
متن کاملThin plate regression splines
I discuss the production of low rank smoothers for d ≥ 1 dimensional data, which can be fitted by regression or penalized regression methods. The smoothers are constructed by a simple transformation and truncation of the basis that arises from the solution of the thinplate spline smoothing problem, and are optimal in the sense that the truncation is designed to result in the minimum possible pe...
متن کاملResearch Article On Solving Lq -Penalized Regressions
Lq-penalized regression arises in multidimensional statistical modelling where all or part of the regression coefficients are penalized to achieve both accuracy and parsimony of statistical models. There is often substantial computational difficulty except for the quadratic penalty case. The difficulty is partly due to the nonsmoothness of the objective function inherited from the use of the ab...
متن کاملPenalized Bregman Divergence Estimation via Coordinate Descent
Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009